Isolation, culture, and characterization of embryonic cell lines from vitrified sheep blastocysts

Mol Reprod Dev. 2006 Jan;73(1):31-9. doi: 10.1002/mrd.20378.

Abstract

This study was conducted to isolate, to culture, and to characterize embryonic cell lines from in vitro produced vitrified sheep blastocysts. Embryos were produced and vitrified at the expanded blastocyst stage. Ten inner cell masses arising from day 6-7 blastocysts were isolated by immunosurgery, disaggregated, and cultured onto mitomocin-C-inactivated mouse STO fibroblasts (MIF). After 5 or 6 days of culture the primary cell colonies were disaggregated, seeded in a new MIF, and cultured for 3 or 4 days to form new colonies called Passage 1. These cells were then disaggregated and cultured for other two passages. The primary cell colonies and Passage 2 colonies expressed stage specific embryonic markers SSEA-1, SSEA-3, and SSEA-4, and were alkaline phosphatase positive. In the absence of feeder layer and human leukemia inhibitory factor (LIF), these cells differentiated into variety of cell types and formed embryoid bodies. When cultured for an extended period of time, embryoid bodies differentiated into derivatives of three embryonic germ (EG) layers. These were characterized by detection of specific markers for differentiation such early mesoderm (FE-C6), embryonic myosin (F1-652), neural precursor (FORSE-1), and endoderm (anti-cytokeratin 18). To our knowledge, this is the first time that embryonic cell lines from in vitro produced and vitrified ovine blastocysts have been isolated and examined for detection of SSEA markers, and embryoid bodies have been cultured and examined for specific cell surface markers for differentiation.

MeSH terms

  • Animals
  • Biomarkers
  • Blastocyst / cytology*
  • Cell Culture Techniques
  • Cell Line*
  • Cell Separation / methods
  • Cytogenetic Analysis
  • Immunohistochemistry
  • Sheep*

Substances

  • Biomarkers