Endocrine regulation of the growth plate

Horm Res. 2005;64(4):157-65. doi: 10.1159/000088791. Epub 2005 Oct 4.

Abstract

Longitudinal bone growth occurs at the growth plate by endochondral ossification. Within the growth plate, chondrocyte proliferation, hypertrophy, and cartilage matrix secretion result in chondrogenesis. The newly formed cartilage is invaded by blood vessels and bone cells that remodel the newly formed cartilage into bone tissue. This process of longitudinal bone growth is governed by a complex network of endocrine signals, including growth hormone, insulin-like growth factor I, glucocorticoid, thyroid hormone, estrogen, androgen, vitamin D, and leptin. Many of these signals regulate growth plate function, both by acting locally on growth plate chondrocytes and also indirectly by modulating other endocrine signals in the network. Some of the local effects of hormones are mediated by changes in paracrine factors that control chondrocyte proliferation and differentiation. Many human skeletal growth disorders are caused by abnormalities in the endocrine regulation of the growth plate. This review provides an overview of the endocrine signals that regulate longitudinal bone growth, their interactions, and the mechanisms by which they affect growth plate chondrogenesis.

Publication types

  • Review

MeSH terms

  • Androgens / physiology
  • Animals
  • Bone Development / drug effects
  • Bone Development / physiology
  • Cell Division
  • Chondrocytes / cytology
  • Chondrogenesis
  • Estrogens / physiology
  • Glucocorticoids / physiology
  • Growth Hormone / physiology
  • Growth Plate / physiology*
  • Hormones / pharmacology
  • Hormones / physiology*
  • Humans
  • Leptin / physiology
  • Somatomedins / physiology
  • Thyroid Hormones / physiology
  • Vitamin D / physiology

Substances

  • Androgens
  • Estrogens
  • Glucocorticoids
  • Hormones
  • Leptin
  • Somatomedins
  • Thyroid Hormones
  • Vitamin D
  • Growth Hormone