Theoretical study of transition state structure and reaction enthalpy of the F + H2-->HF + H reaction by a diffusion quantum Monte Carlo approach

J Chem Phys. 2005 May 15;122(19):194323. doi: 10.1063/1.1899125.

Abstract

Ab initio calculations of transition state structure and reaction enthalpy of the F + H2-->HF + H reaction has been carried out by the fixed-node diffusion quantum Monte Carlo method in this study. The Monte Carlo sampling is based on the Ornstein-Uhlenbeck random walks guided by a trial wave function constructed from the floating spherical Gaussian orbitals and spherical Gaussian geminals. The Monte Carlo calculated barrier height of 1.09(16) kcal/mol is consistent with the experimental values, 0.86(10)/1.18(10) kcal/mol, and the calculated value from the multireference-type coupled-cluster (MRCC) calculation with the aug-cc-pVQZ(F)/cc-pVQZ(H) basis set, 1.11 kcal/mol. The Monte Carlo-based calculation also gives a similar value of the reaction enthalpy, -32.00(4) kcal/mol, compared with the experimental value, -32.06(17) kcal/mol, and the calculated value from a MRCC/aug-cc-pVQZ(F)/cc-pVQZ(H) calculation, -31.94 kcal/mol. This study clearly indicates a further application of the random-walk-based approach in the field of quantum chemical calculation.