Effect of the acid activation levels of montmorillonite clay on the cetyltrimethylammonium cations adsorption

Langmuir. 2005 Sep 13;21(19):8717-23. doi: 10.1021/la050774z.

Abstract

For the first time, the intercalation properties of acid-activated montmorillonites treated at different acid/clay (w/w) ratios with a cationic surfactant cetyltrimethylammonium (C16TMA) hydroxide are reported. The acid activation causes a reduction in the number of cation exchange sides and, hence improves the exfoliation of the silicate sheets at higher pH values. The basal spacing increases significantly from 1.54 to 3.80 nm, and is related to the acid activation extent. The acid activated clays with acid/clay ratios above 0.2 intercalated significant amounts of C16TMA cations with a basal spacing of 3.8 nm compared to the non acid activated montmorillonite with a basal spacing of 2.10 nm. The 13C CP/MAS NMR indicates that the intercalated surfactants exhibit a significant degree of gauche conformation in the acid-activated clays. According to in-situ powder XRD, an increase of the basal spacing to 4.08 nm is observed at intermediate temperatures of 50-150 degrees C for organoclay with basal spacing of 3.80 nm, at higher temperatures above 300 degrees C, the decomposition of the surfactant occurs and the basal spacing decreases to a value of about 1.4 nm, with the persistence of a reflection at 3.8 nm for clay at a higher acid/clay ratio of 0.5.