Epidermal growth factor receptor domain II, IV, and kinase domain mutations in human solid tumors

J Mol Med (Berl). 2005 Dec;83(12):976-83. doi: 10.1007/s00109-005-0699-4. Epub 2005 Aug 31.

Abstract

Mutations that may predict response to adenosine 5'-triphosphate (ATP)-mimetic epidermal growth factor receptor (EGFR) inhibitors occur in the EGFR kinase domain in lung adenocarcinomas and bronchioloalveolar carcinomas (BACs). Data on the frequency of EGFR mutations are sparse in other human tumors. Apart from the deletion mutant EGFRvIII, little is known about the frequency of mutations that encode for the EGFR extracellular domains II and IV that participate in receptor dimerization and formation of the tethered (autoinhibited) receptor conformation. We investigated 566 human neoplasms consisting of various histological types for mutations in exons 6, 7 (encode domain II), 14, 15 (domain IV), 18, 19, and 21 (the kinase domain) using denaturing high-performance liquid chromatography (DHPLC). Approximately 4,500 EGFR exons were screened for the presence of a mutation, and samples with an abnormal finding in DHPLC were sequenced. Only one mutation was found in the extracellular domain IV (glioblastoma), and none in domain II. Eight (11%) out of the 40 lung adenocarcinomas, or 33 BACs, investigated had exon 19 or 21 mutation in the kinase domain, but no mutations were found in other tumor types. Most of the lung cancers with mutated EGFR had three to six copies of the mutated gene in fluorescence in situ hybridization. We conclude that mutations of the EGFR kinase domain and the cysteine-rich extracellular domains are infrequent in most types of human cancer apart from lung adenocarcinoma. Mutated EGFR is usually not amplified in lung cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Carcinoma, Non-Small-Cell Lung / enzymology
  • Carcinoma, Non-Small-Cell Lung / genetics
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Chromatography, High Pressure Liquid
  • ErbB Receptors / chemistry
  • ErbB Receptors / genetics*
  • ErbB Receptors / metabolism
  • Exons
  • Glioblastoma / enzymology
  • Glioblastoma / genetics*
  • Glioblastoma / pathology
  • Humans
  • In Situ Hybridization, Fluorescence
  • Lung Neoplasms / enzymology
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / pathology
  • Molecular Sequence Data
  • Mutation*
  • Polymerase Chain Reaction
  • Protein Structure, Tertiary
  • Receptor Protein-Tyrosine Kinases / chemistry
  • Receptor Protein-Tyrosine Kinases / genetics*
  • Receptor Protein-Tyrosine Kinases / metabolism
  • Sequence Analysis, DNA

Substances

  • ErbB Receptors
  • Receptor Protein-Tyrosine Kinases