Absorption and enterohepatic circulation of baicalin in rats

Life Sci. 2005 Nov 26;78(2):140-6. doi: 10.1016/j.lfs.2005.04.072. Epub 2005 Aug 16.

Abstract

Pharmacokinetics of baicalin, in form of its parent drug (BG) and conjugated metabolites (BGM), were studied following intravenous and oral administration of baicalin to intact rats. The enterohepatic circulation of BG and BGM was also assessed in a linked-rat model. Multiple plasma and urine samples were collected, and concentrations of BG and BGM were determined using a liquid chromatography/tandem mass spectrometry method. The concentration of BGM was assayed in the form of baicalein after treatment with beta-glucuronidase/sulfatase. After i.v. administration, plasma concentration of BG rapidly declined with the elimination half-life (T1/2) of 0.1 till 4 h post dose, followed by slight increase from 4-8 h in plasma concentrations after drug administration. These plasma concentrations resulted in a significant prolongation of the terminal elimination half-life of BG (T1/2 TER, 9.7 h). BG also displayed slight increase in plasma concentrations (12-24 h) after oral administration, with T1/2 TER of 12.1 h. Based on the AUC of BG and BGM, the absolute bioavailability of baicalin was 2.2+/-0.2% and 27.8+/-5.6%, respectively. The exposure of baicalin to the systemic circulation was approximately 118-fold lower than that of BGM after oral administration (AUC0-t, 4.43 versus 523.97 nmol.h/mL). The high extent of glucuronidation suggested the possible presence of enterohepatic circulation, which was confirmed in the linked-rat model since plasma concentrations of BG and BGM were observed in bile-recipient rats at 4 to 36 h. The extent of enterohepatic circulation after intravenous administration of baicalin was 4.8% and 13.3% for BG and BGM, respectively. It was determined that 18.7% and 19.3% of the administered baicalin were subjected to enterohepatic circulation for BG and BGM, respectively, after oral administration. These results confirm that BG undergoes extensive first-pass glucuronidation and that enterohepatic circulation contributes significantly to the exposure of BG and BGM in rats.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Infective Agents / administration & dosage
  • Anti-Infective Agents / pharmacokinetics*
  • Area Under Curve
  • Bile / metabolism
  • Bile Ducts / metabolism
  • Biological Availability
  • Chromatography, High Pressure Liquid
  • Enterohepatic Circulation / physiology*
  • Flavonoids / administration & dosage
  • Flavonoids / pharmacokinetics*
  • Half-Life
  • Hydrolysis
  • Injections, Intravenous
  • Intestinal Absorption
  • Male
  • Rats
  • Rats, Wistar
  • Reproducibility of Results
  • Tissue Distribution

Substances

  • Anti-Infective Agents
  • Flavonoids
  • baicalin