Multiple stem cell populations contribute to the formation of the myocardium

Ann N Y Acad Sci. 2005 Jun:1047:38-49. doi: 10.1196/annals.1341.004.

Abstract

Owing to the very rapid growth of the vertebrate embryo following fertilization, an efficient circulatory system needs to be established during the initial stages of development. For that reason, the first functional organ that develops in both the bird and mammalian embryo is the heart. Until recently, the narrative of cardiac development was portrayed in a straightforward manner, with all the myocardium in the mature heart being generated from the expansion of an original pool of myocardial cells present in the early gastrula. It is now known that the story of the developing myocardium is more dynamic, as it is comprises cellular components of multiple ancestries. The de novo addition of myocytes to the developing heart occurs at various points during embryogenesis, as cardiac muscle takes on new members by the absorption of cells that either reside in neighboring nonmuscle tissue or come into contact with the myocardium by entering the heart upon migration or via the circulation. This article reviews what is presently known about cellular populations that contribute to the myocardium and examine reasons why the embryo utilizes multiple cellular sources for forming the cardiac muscle.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Heart / embryology*
  • Humans
  • Myocardium / cytology*
  • Neural Crest / cytology
  • Stem Cells / cytology*