Non-blood contacting electro-hydraulic artificial myocardium (EHAM) improves the myocardial tissue perfusion

Technol Health Care. 2005;13(4):229-34.

Abstract

Artificial heart (AH) and ventricular assist devices (VAD) are widely used in the clinical setting to assist severe heart failure patients. The concept of direct cardiac compression (DCC) has been in use for several decades and has advantages over intravascular VAD. The process involves compressing the dysfunctional heart from its epicardial surface to avoid the thromboembolic events and decrease the complications and mortality. An Electro-hydraulic Artificial Myocardium (EHAM) system was designed and fabricated by Tohoku University. This system may assist cardiac contraction and create pulsatile blood flow. The aim of this study was to clearly define the hemodynamic efficiency of the EHAM system in myocardial tissue perfusion during its application in acute animal experiment. Eight healthy adult goats were used; left lateral thoracotomy was performed and the chest was opened by the resection of the 4th and 5th ribs. Hemodynamic parameters including ECG, blood pressure and cardiac output were continuously monitored. Myocardial tissue perfusion was measured by using Omega flow laser fiber attached to the surface of the heart. During the EHAM compression, and increase in blood pressure and myocardial tissue perfusion was observed in all animals when compared with pre-assisted mode. To conclude, EHAM effectively improves myocardial tissue perfusion and increases the pressure on the initiation of direct cardiac compression immediately. Thus it can be a potentially valuable adjunct in the management of severe heart failure.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Artificial Organs*
  • Blood Circulation
  • Cardiac Output, Low / physiopathology
  • Cardiac Output, Low / therapy
  • Goats
  • Myocardial Contraction
  • Myocardial Reperfusion / instrumentation*