In situ quadrupole mass spectrometry study of atomic-layer deposition of ZrO2 using Cp2Zr(CH3)2 and water

Langmuir. 2005 Aug 2;21(16):7321-5. doi: 10.1021/la0500732.

Abstract

Reactions during the atomic layer deposition (ALD) process of ZrO(2) from Cp(2)Zr(CH(3))(2) and deuterated water as precursors were studied with a quadrupole mass spectrometer (QMS) at 210-440 degrees C. The detected reaction byproducts were CpD (m/z = 67) and CH(3)D (m/z = 17). Almost all (90%) of the CH(3) ligands were released during the Cp(2)Zr(CH(3))(2) precursor pulse because of exchange reactions with the OD-terminated surface, and the rest, during the D(2)O pulse. About 40% of the CpD was released during the metal precursor pulse, and 60%, during the D(2)O pulse. ALD-type self-limiting growth was confirmed from 210 to 400 degrees C. However, below 300 degrees C the growth rate was low. Precursor decomposition affected the film growth mechanism at temperatures exceeding 400 degrees C.