Membrane-based wet electrostatic precipitation

J Air Waste Manag Assoc. 2005 Jun;55(6):784-91. doi: 10.1080/10473289.2005.10464658.

Abstract

Emissions of fine particulate matter, PM2.5, in both primary and secondary form, are difficult to capture in typical dry electrostatic precipitators (ESPs). Wet (or water-based) ESPs are well suited for collection of acid aerosols and fine particulates because of greater corona power and virtually no re-entrainment. However, field disruptions because of spraying (misting) of water, formation of dry spots (channeling), and collector surface corrosion limit the applicability of current wet ESPs in the control of secondary PM2.5. Researchers at Ohio University have patented novel membrane collection surfaces to address these problems. Water-based cleaning in membrane collectors made of corrosion-resistant fibers is facilitated by capillary action between the fibers, maintaining an even distribution of water. This paper presents collection efficiency results of lab-scale and pilot-scale testing at FirstEnergy's Bruce Mansfield Plant for the membrane-based wet ESP. The data indicate that a membrane wet ESP was more effective at collecting fine particulates, acid aerosols, and oxidized mercury than the metal-plate wet ESP, even with approximately 15% less collecting area.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Air Movements
  • Air Pollutants / isolation & purification*
  • Air Pollution / prevention & control*
  • Chemical Precipitation
  • Membranes, Artificial
  • Particle Size
  • Static Electricity

Substances

  • Air Pollutants
  • Membranes, Artificial