Synthesis and characterization of binuclear molybdenum-polycarboxylate complexes with sulfur bridges

J Inorg Biochem. 2005 Aug;99(8):1602-10. doi: 10.1016/j.jinorgbio.2005.04.020.

Abstract

A group of four binuclear sulfur-bridged molybdenum-polycarboxylato complexes with homocitrate, citrate, cysteine, ethylenediaminetetraacetate ligands, respectively, have been synthesized and characterized. These complexes were prepared in order to study the interaction of Mo and homocitrate in the FeMo-co of nitrogenases. In the structures of K4(NH4)2[Mo2O2S2(C6H4O7)2].10H2O (2), (NH4)2[Mo2O2S2(C3H5SNO2)2].5H2O (3) and (NH4)2[Mo2O2S2(C10H12N2O8)].3.5H2O (4), molybdenum (V) atom adopts a distorted octahedral arrangement through a terminal oxygen atom, two bridging sulfur atoms and three atoms from the ligand (hydroxyl, alpha-, beta-carboxylates, sulfide or amine). The coordination mode of homocitrate ligand in K5(NH4)[Mo2O2S2(C7H5O7)2].3H2O.CH3OH (1) has been proposed in a tridentate fashion via its hydroxyl and a pair of carboxylate groups (alpha-, beta-carboxylates). The electrochemical properties of these complexes have been discussed.