Breath sound changes associated with malpositioned endotracheal tubes

Med Biol Eng Comput. 2005 Mar;43(2):206-11. doi: 10.1007/BF02345956.

Abstract

Endotracheal tubes (ETTs) are used to establish airway access in patients with ventilatory failure and during general anaesthesia. Tube malpositioning can compromise respiratory function and can be associated with increased morbidity and mortality. Clinical assessment of ETT position normally involves chest auscultation, which is highly skill-dependent and can be misleading. The objective of this pilot study was to investigate breath sound changes associated with ETT malpositioning. Breath sounds were acquired in six human subjects over each hemithorax and over the epigastrium for tracheal, bronchial and oesophageal intubations. When the ETT was in the oesophagus, the acoustic energy ratio between epigastrium and chest surface increased in all subjects (p < 0.04). In addition, ETT placement in the right mainstem bronchus decreased the acoustic energy ratio between the left and right hemithoraxes in all subjects (p < 0.04). A baseline measurement of this energy ratio was needed for bronchial intubation identification. However, using this ratio after bandpass filtering (200-500 Hz) did not require a baseline value, which would increase the utility of this method for initial ETT placement. These results suggest that computerised analysis of breath sounds may be useful for assessment of ETT positioning. More studies are needed to test the feasibility of this approach further.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acoustics
  • Bronchi
  • Esophagus
  • Foreign Bodies / diagnosis*
  • Foreign Bodies / etiology
  • Humans
  • Intubation, Intratracheal / adverse effects*
  • Pilot Projects
  • Respiratory Sounds / etiology*
  • Signal Processing, Computer-Assisted