Influence of mast cells on structural and functional manifestations of radiation-induced heart disease

Cancer Res. 2005 Apr 15;65(8):3100-7. doi: 10.1158/0008-5472.CAN-04-4333.

Abstract

Radiation-induced heart disease (RIHD), characterized by accelerated atherosclerosis and adverse tissue remodeling, is a serious sequelae after radiotherapy of thoracic and chest wall tumors. Adverse cardiac remodeling in RIHD and other cardiac disorders is frequently accompanied by mast cell hyperplasia, suggesting that mast cells may affect the development of cardiac fibrosis. This study used a mast cell-deficient rat model to define the role of mast cells in RIHD. Mast cell-deficient rats (Ws/Ws) and mast cell-competent littermate controls (+/+) were exposed to 18 Gy localized single-dose irradiation of the heart. Six months after irradiation, cardiac function was examined by echocardiography and Langendorff-perfused isolated heart preparation, whereas structural changes were assessed using quantitative histology and immunohistochemical analysis. Mast cell-deficient rats exhibited more severe postradiation changes than mast cell-competent littermates. Hence, mast cell-deficient rats exhibited a greater upward/leftward shift in the left ventricular (LV) diastolic pressure-volume relationship (P = 0.001), a greater reduction in in vivo LV diastolic area (from 0.50 +/- 0.024 cm in age-matched controls to 0.24 +/- 0.032 cm after irradiation; P = 0.006), and a greater increase in LV posterior wall thickness (from 0.13 +/- 0.003 cm in age-matched controls to 0.15 +/- 0.003 cm after irradiation; P = 0.04). Structural analysis revealed more pronounced postradiation accumulation of interstitial collagen III but less myocardial degeneration in hearts from mast cell-deficient rats. These data show that the absence of mast cells accelerates the development of functional changes in the irradiated heart, particularly diastolic dysfunction, and suggest that, in contrast to what has been the prevailing assumption, the role of mast cells in RIHD is predominantly protective.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Collagen / metabolism
  • Diastole / radiation effects
  • Disease Models, Animal
  • Electrocardiography / radiation effects
  • Heart / radiation effects*
  • Heart Diseases / etiology*
  • Heart Diseases / pathology*
  • Male
  • Mast Cells / pathology
  • Mast Cells / physiology*
  • Myocardium / metabolism
  • Myocardium / pathology
  • Necrosis
  • Radiation Injuries, Experimental / pathology*
  • Rats
  • Ventricular Function, Left / radiation effects
  • Ventricular Remodeling / radiation effects

Substances

  • Collagen