Strain softening, yielding, and shear thinning in glassy colloidal suspensions

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Feb;71(2 Pt 1):021401. doi: 10.1103/PhysRevE.71.021401. Epub 2005 Feb 2.

Abstract

A microscopic theory for the dependence on external strain, stress, and shear rate of the transient localization length, elastic modulus, alpha relaxation time, shear viscosity, and other dynamic properties of glassy colloidal suspensions is formulated and numerically applied. The approach is built on entropic barrier hopping as the elementary physical process. The concept of an ideal glass transition plays no role, and dynamical slowing down is a continuous, albeit precipitous, process with increasing colloid volume fraction. The relative roles of mechanically driven motion versus thermally activated barrier hopping and transport have been studied. Various scaling behaviors are found for the relaxation time and shear viscosity in both the controlled stress and shear rate mode of rheological experiments. Apparent power law and/or exponential dependences of the elastic modulus and perturbative and absolute yield stresses on colloid volume fraction are predicted. A nonmonotonic dependence of the absolute yield strain on volume fraction is also found. Qualitative and quantitative comparisons of calculations with experiments on high volume fraction glassy colloidal suspensions show encouraging agreement, and multiple testable predictions are made. The theory is generalizable to treat nonlinear rheological phenomena in other soft glassy complex fluids including depletion gels.