EXAFS and time-resolved laser fluorescence spectroscopy (TRLFS) investigations of the structure of Cm(III)/Eu(III) complexed with di(chlorophenyl)dithiophosphinic acid and different synergistic agents

Dalton Trans. 2005 Apr 7:(7):1281-6. doi: 10.1039/b418371a. Epub 2005 Mar 1.

Abstract

The complexes of trivalent actinide curium (Cm(III)) with di(chlorophenyl)dithiophosphinic acid ((ClPh)2PSSH) and three different neutral complexing agents as synergists in tert-butylbenzene are studied by EXAFS and time-resolved laser fluorescence spectroscopy (TRLFS). The results are compared with those from the corresponding europium (Eu(III)) complexes. The aim of these investigations is to understand the chemical interactions responsible for the high selectivity of the synergistic systems of (ClPh)2PSSH and neutral complexing agents tri-n-octylphosphine oxide, tributylphosphate and tris(2-ethylhexyl)phosphate for trivalent actinide cations in liquid-liquid extraction. In our structural chemistry study, we find that the inner coordination sphere of extracted Cm(III) and Eu(III) complexes are different. In all complexes the (ClPh)2PSSH is bound to the metal cation in a bidentate fashion and the oxygen donor of the neutral complexing agent used as synergist is directly coordinated to the metal cation. Comparison of the Cm(III) and Eu(III) complexes shows that Cm(III) preferentially binds to the sulfur of (ClPh)2PSSH, whereas Eu(III) is preferentially bound to oxygen. A good selectivity in liquid-liquid extraction is correlated with a high ratio of the sulfur coordination number to oxygen coordination number. This leads to the conclusion that the observed differences in the coordination structure between Cm(III) and Eu(III) complexes play an important role in the selectivity of these extraction systems.