Replication-coupled modulation of early replicating chromatin domains detected by anti-actin antibody

J Cell Biochem. 2005 Apr 1;94(5):899-916. doi: 10.1002/jcb.20374.

Abstract

Evidence is presented for the reversible, cold-dependent immunofluorescence detection of the epitope (hereafter referred to as epiC), recognized by a monoclonal anti-actin antibody in diploid human fibroblast cell nuclei and mitotic chromosomes. The nuclear/chromosomal epiC was detected in a cell cycle window beginning in early S phase and extending through S phase, G(2) phase, mitosis until early G(1) phase of the subsequent daughter cells. A small but significant level of co-localization was measured between the nuclear epiC and active sites of DNA replication in early S phase. The level of co-localization was strikingly enhanced beginning approximately 1 h after the initial labeling of early S phase replicating chromatin domains. In contrast, epiC did not co-localize with late S phase replicated chromatin either during DNA replication or at any other time in the cell cycle. We propose a replication-coupled modulation of early S phase replicated chromatin domains that is detected by the chromatin epiC positivity, persists on the chromatin domains from early S until early G(1) of the next cell generation, and may be involved in the regulation and/or coordination of replicational and transcriptional processes during the cell cycle. Further studies will be required to resolve the possible role of nuclear actin in this modulation process.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Actins / immunology*
  • Blotting, Western
  • Cells, Cultured
  • Chromatin / chemistry*
  • DNA Replication*
  • G1 Phase
  • Humans
  • Image Processing, Computer-Assisted
  • Microscopy, Fluorescence
  • S Phase

Substances

  • Actins
  • Chromatin