Green photoluminescence from platinum(II) complexes bearing silylacetylide ligands

Inorg Chem. 2005 Feb 7;44(3):471-3. doi: 10.1021/ic048498j.

Abstract

The synthesis, structural characterization, photoluminescence properties, and density functional theory analysis of three Pt(II) diimine complexes, Pt(dbbpy)(C triple bond CR)2 [dbbpy = 4,4'-di(tert-butyl-2,2'-bipyridine; R = -SiMe3, -CC-SiMe3, or -t-Bu], are presented. The Pt(dbbpy)(C triple bond C-tBu)2 complex serves as a carbon-based ligand structure for which the photophysical properties of the two silicon-bearing complexes are compared in dichloromethane. Pt(dbbpy)(C triple bond C-SiMe3)2 and Pt(dbbpy)(C triple bond C-C triple bond C-SiMe3)2 display visible absorptions with strong green emission (lambda(emmax) = 526 and 524 nm, respectively) while Pt(dbbpy)(C triple bond C-t-Bu)2 displays efficient, long-lived yellow emission (lambda(emmax) = 557 nm). Direct side by side comparisons of Pt(dbbpy)(C triple bond C-SiMe3)2 and Pt(dbbpy)(C triple bond C-t-Bu)2 suggest that the difference in excited state energy results from the relative sigma-donor strength of the acetylide ligands.