Molecular genetics using T-DNA in rice

Plant Cell Physiol. 2005 Jan;46(1):14-22. doi: 10.1093/pcp/pci502. Epub 2005 Jan 19.

Abstract

Now that sequencing of the rice genome is nearly completed, functional analysis of its large number of genes is the next challenge. Because rice is easy to transform, T-DNA has been used successfully to generate insertional mutant lines. Collectively, several laboratories throughout the world have established at least 200,000 T-DNA insertional lines. Some of those carry the GUS or GFP reporters for either gene or enhancer traps. Others are activation tagging lines for gain-of-function mutagenesis when T-DNA is inserted in the intergenic region. A forward genetic approach showed limited success because of somaclonal variations induced during tissue culture. To utilize these resources more efficiently, tagged lines have been produced for reverse genetics approaches. DNA pools of the T-DNA-tagged lines have been prepared for polymerase chain reaction (PCR) screening of insertional mutants in a given gene. Appropriate T-DNA insertion sites are determined by sequencing the region flanking the T-DNA. This information is then used to make databases that are shared with the scientific community. International efforts on seed amplification and maintenance are needed to exploit these valuable materials efficiently.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • DNA, Bacterial / genetics*
  • Databases, Nucleic Acid
  • Gene Library
  • Genomics
  • Molecular Biology
  • Mutagenesis, Insertional
  • Oryza / genetics*
  • Oryza / microbiology

Substances

  • DNA, Bacterial
  • T-DNA