Serotonin neurotoxins--past and present

Neurotox Res. 2004;6(7-8):589-614. doi: 10.1007/BF03033455.

Abstract

Autoxidation pathways and redox reactions of dihydroxytryptamines (5,6- and 5,7-DHT) and of 6-hydroxydopamine (6-OH-DA) are illustrated, and their potential role in aminergic neurotoxicity is discussed. It is proposed that certain aspects of the cytotoxicity of 6-OH-DA and of the DHTs, namely redox cycling of their quinone- and quinoneimine-intermediates as a source of free radicals, may also apply to quinoidal reactive intermediates and to glutathionyl- or cysteinyl conjugates ("thioether adducts") of o-dihydroxylated (catechol-like) metabolites of certain substituted amphetamines (of methylenedioxymethamphetamine (MDMA) and of methylenedioxyamphetamine (MDA)). Despite similarities in their primary interaction with the plasmalemmal (serotonergic transporter/dopamine transporter, SERT/DAT) and vesicular monoamine transporters (VMAT2), MDMA and fenfluramine (N-ethyl-meta-trifluoromethamphetamine, Fen) differ substantially in many aspects of their metabolism, pharmacokinetics, pharmacology, and neurotoxicology profile; the consequences of these differences for neuronal response patterns and long-term survival prospects are not yet fully understood. However, sustained hyperthermia appears to be a critical factor in these differences. Methodological requirements for adequate detection and description of pre- and postsynaptic forms of drug-induced neurotoxicity are exemplified using recently published accounts. The inclusion of microglial markers into research strategies has widened contemporary pathogenetic concepts on methamphetamine (MA)-induced neurotoxicity as an example of inflammatory neurodegeneration, thus complementing the traditional ROS and RNS-dependent stress models. Amphetamine-type neurotoxicity studies may assist in elaborating of preventive strategies for human neurodegenerative disorders.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Neurons / drug effects
  • Neurons / metabolism
  • Neurotoxins / toxicity*
  • Serotonin / analogs & derivatives
  • Serotonin / metabolism*
  • Serotonin / toxicity*

Substances

  • Neurotoxins
  • Serotonin