Vaccinia virus F1L protein is a tail-anchored protein that functions at the mitochondria to inhibit apoptosis

J Virol. 2005 Jan;79(2):1084-98. doi: 10.1128/JVI.79.2.1084-1098.2005.

Abstract

Members of the poxvirus family encode multiple immune evasion proteins, including proteins that regulate apoptosis. We recently identified one such protein, F1L, encoded by vaccinia virus, the prototypic member of the poxvirus family. F1L localizes to the mitochondria and inhibits apoptosis by interfering with the release of cytochrome c, the pivotal commitment step in the apoptotic cascade. Sequence analysis of the F1L open reading frame revealed a C-terminal motif composed of a 12-amino-acid transmembrane domain flanked by positively charged lysines, followed by an 8-amino-acid hydrophilic tail. By generating a series of F1L deletion constructs, we show that the C-terminal domain is necessary and sufficient for localization of F1L to the mitochondria. In addition, mutation of lysines 219 and 222 downstream of the C-terminal transmembrane domain resulted in altered localization of F1L to the endoplasmic reticulum. Using F1L protein generated in an in vitro transcription-translation system, we found that F1L was posttranslationally inserted into mitochondria and tightly associated with mitochondrial membranes as demonstrated by resistance to alkaline extraction. Sensitivity to protease digestion showed that the N terminus of F1L was exposed to the cytoplasm. Utilizing various F1L deletion constructs, we found that F1L localization to the mitochondria was necessary to inhibit apoptosis, since constructs that no longer localized to the mitochondria had reduced antiapoptotic ability. Our studies show that F1L is a new member of the tail-anchored protein family that localizes to mitochondria during virus infection and inhibits apoptosis as a means to enhance virus survival.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis*
  • HeLa Cells
  • Humans
  • Mitochondria / physiology*
  • Vaccinia virus / physiology*
  • Viral Proteins / chemistry
  • Viral Proteins / physiology*

Substances

  • Viral Proteins