Responses of irregularly discharging chinchilla semicircular canal vestibular-nerve afferents during high-frequency head rotations

J Neurophysiol. 2005 May;93(5):2777-86. doi: 10.1152/jn.01002.2004. Epub 2004 Dec 15.

Abstract

Mammalian vestibular-nerve afferents innervating the semicircular canals have been divided into groups according to their discharge regularity, gain at 2-Hz rotational stimulation, and morphology. Low-gain irregular afferents terminate in calyx endings in the central crista, high-gain irregular afferents synapse more peripherally in dimorphic (bouton and calyx) endings, and regular afferents terminate in the peripheral zone as bouton-only and dimorphic endings. The response dynamics of these three groups have been described only up to 4 Hz in previous studies. Reported here are responses of chinchilla semicircular canal vestibular-nerve afferents to rotational stimuli at frequencies up to 16 Hz. The sensitivity of all afferents increased with increasing frequency with the sensitivity of low-gain irregular afferents increasing the most and matching the high-gain irregular afferents at 16 Hz. All afferents increased their phase lead with respect to stimulus velocity at higher frequencies with the highest leads in low-gain irregular afferents and the lowest in regular afferents. No attenuation of sensitivity or shift in phase consistent with the presence of a high-frequency pole over the range tested was noted. Responses were best fit with a torsion-pendulum model combined with a lead operator (tau(HF1)s + 1)(tau(HF2)s + 1). The discharge regularity of individual afferents was correlated to the value of each afferent's lead operator time constants. These findings suggest that low-gain irregular afferents are well suited for encoding the onset of rapid head movements, a property that would be advantageous for initiation of reflexes with short latency such as the vestibulo-ocular reflex.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Chinchilla
  • Head Movements
  • Head*
  • Neurons, Afferent / physiology*
  • Reflex, Vestibulo-Ocular / physiology*
  • Rotation*
  • Semicircular Canals / physiology*
  • Time Factors
  • Vestibular Nerve / cytology*
  • Vestibular Nerve / physiology