Diastereoselective alkylation of beta-amino esters: structural and rate studies reveal alkylations of hexameric lithium enolates

J Am Chem Soc. 2004 Dec 22;126(50):16559-68. doi: 10.1021/ja045144i.

Abstract

Alkylation of beta-amino ester enolates proceeds with high diastereoselectivity. Single crystal, powder, and solution X-ray diffraction studies of the enolate show that the racemic enolate forms prismatic hexamers. 6Li NMR spectroscopic studies on partially racemic enolates reveal complex mixtures of homo- and heterochiral hexamers. An implicit fit of the aggregate populations to the Boltzmann distribution provides the free energy differences and equilibrium constants for the ensemble. Rate studies show that enolate alkylation occurs directly from the hexamer with participation by THF. A mechanism based on the alkylation of a ladder-like aggregate is proposed.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alkylation
  • Amino Acids / chemistry*
  • Crystallography, X-Ray
  • Esters / chemistry
  • Kinetics
  • Lithium / chemistry*
  • Magnetic Resonance Spectroscopy
  • Models, Molecular
  • Organometallic Compounds / chemistry
  • Stereoisomerism

Substances

  • Amino Acids
  • Esters
  • Organometallic Compounds
  • Lithium