Genome-wide analysis of the human Alu Yb-lineage

Hum Genomics. 2004 Mar;1(3):167-78. doi: 10.1186/1479-7364-1-3-167.

Abstract

The Alu Yb-lineage is a 'young' primarily human-specific group of short interspersed element (SINE) subfamilies that have integrated throughout the human genome. In this study, we have computationally screened the draft sequence of the human genome for Alu Yb-lineage subfamily members present on autosomal chromosomes. A total of 1,733 Yb Alu subfamily members have integrated into human autosomes. The average ages of Yb-lineage subfamilies, Yb7, Yb8 and Yb9, are estimated as 4.81, 2.39 and 2.32 million years, respectively. In order to determine the contribution of the Alu Yb-lineage to human genomic diversity, 1,202 loci were analysed using polymerase chain reaction (PCR)-based assays, which amplify the genomic regions containing individual Yb-lineage subfamily members. Approximately 20 percent of the Yb-lineage Alu elements are polymorphic for insertion presence/absence in the human genome. Fewer than 0.5 percent of the Yb loci also demonstrate insertions at orthologous positions in non-human primate genomes. Genomic sequencing of these unusual loci demonstrates that each of the orthologous loci from non-human primate genomes contains older Y, Sg and Sx Alu family members that have been altered, through various mechanisms, into Yb8 sequences. These data suggest that Alu Yb-lineage subfamily members are largely restricted to the human genome. The high copy number, level of insertion polymorphism and estimated age indicate that members of the Alu Yb elements will be useful in a wide range of genetic analyses.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alu Elements / genetics*
  • Animals
  • Base Sequence
  • Chromosomes, Human
  • Evolution, Molecular
  • Genome, Human*
  • Humans
  • Molecular Sequence Data
  • Polymorphism, Genetic
  • Sequence Analysis, DNA*
  • Sequence Homology, Nucleic Acid