A DFT study of the ground state multiplicities of linear vs angular polyheteroacenes

J Am Chem Soc. 2004 Dec 15;126(49):16232-41. doi: 10.1021/ja045006t.

Abstract

Unrestricted density functional calculations in combination with the broken-symmetry approach and spin-projection methods have been employed to study a series of formally 4n pi antiaromatic linear and angular polyheteroacenes. Calculations show that the linear polyheteroacene molecules have either stable singlet zwitterionic 6-9 or singlet diradical 5 ground states because they sacrifice the aromaticity of the central arene to form two independent cyanines. The corresponding angular compounds 10-14 have robust triplet states, since they cannot create independent cyanines to escape their overall antiaromaticity. An analysis based on the SOMO-SOMO energy splittings, their spatial distributions, and the spin density populations for the triplet states is presented to clarify the factors that determine their ground state multiplicities.