Purinergic-receptor oligomerization: implications for neural functions in the central nervous system

Neurotox Res. 2004;6(4):291-7. doi: 10.1007/BF03033439.

Abstract

It is becoming clear that the functions of G protein-coupled receptors (GPCRs), the largest family of plasma membrane-localized receptors, are regulated by direct oligomeric formation between GPCRs, as either homo- or hetero-oligomers. This review article explores the mechanistic implications of GPCR dimerization, especially among purinergic receptors, adenosine receptors and P2 receptors, which play critical roles in the regulation of neurotransmission in the central nervous system. Briefly, adenosine receptors are able to form a heteromeric complex with P2 receptors that generates an adenosine receptor with P2 receptor-like agonistic pharmacology. This mechanism may be used to fine-tune purinergic inhibition locally at sites where there is a particular oligomerization structure between purinergic receptors, and to explain the undefined adenosine-like purinergic functions of adenine nucleotides. Purinergic receptors also form oligomers with GPCRs of other families present in the brain, such as dopamine receptors and metabotropic glutamate receptors, to alter the functional properties. The effect of GPCR oligomerization on receptor functions is thus considered as an important system in the central nervous system.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Central Nervous System / metabolism*
  • Humans
  • Receptors, Purinergic / chemistry
  • Receptors, Purinergic / metabolism*
  • Synaptic Transmission / physiology*

Substances

  • Receptors, Purinergic