Rapid and direct analysis of gamma-hydroxybutyric acid in urine by capillary electrophoresis-electrospray ionization ion-trap mass spectrometry

J Chromatogr A. 2004 Oct 8;1051(1-2):207-11.

Abstract

The present work was aimed at the development of a capillary electrophoretic analysis of gamma-hydroxybutyric acid (GHB) using electrospray ion trap mass spectrometry to achieve the direct and unequivocal detection of this analyte in human urine. Optimized capillary electrophoretic conditions were: injection, 20 s at 0.5 psi (1 psi = 6894.76 Pa); buffer electrolyte, 12.5 mM ammonium formate adjusted to pH 8.35 with diethylamine; fused silicacapillary: 100 cm x 50 microm i.d.; separation voltage, 25 kV (forward polarity) + 0.5 psi; room temperature. Electrospray and mass spectrometric conditions were: drying gas and nebulizing gas (nitrogen) at flow rate 3 l/min, temperature 250 degrees C, nebulizer pressure: 10 psi; sheath liquid solution: methanol-water (90:10) containing 0.1% ammonia delivered at 3 microl/min; spray voltage 3.5 kV. Mass spetrometric detection was carried out in the selected ion monitoring mode of negative molecular ions at 103 m/z for GHB and 115 m/z for maleic acid (I.S.). Under these conditions the baseline separation of GHB and the I.S. was obtained. The selectivity of the analysis allowed for direct injection of unextracted urine, previously diluted 1:4 with water. Linearity was assessed in the GHB concentration range from 80 to 1280 microg/ml in urine. Analytical sensitivity (as limit of detection) resulted about 5 microg/ml in water and 20 microg/ml in original urine. Analytical precision was fairly acceptable with R.S.D. values lower than 5% for migration times and 18% for quantitation in real samples, in both intra day and day-to-day experiments. On these grounds, the developed method can be adopted for rapid identification of acute intoxications from GHB in humans.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electrophoresis, Capillary / methods*
  • Hydroxybutyrates / urine*
  • Reference Standards
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Spectrometry, Mass, Electrospray Ionization / methods*

Substances

  • Hydroxybutyrates
  • 4-hydroxybutyric acid