Calculated optical and magnetic properties of hexafluorouranate (V) anion: UF- 6

J Chem Phys. 2004 Oct 22;121(16):7743-7. doi: 10.1063/1.1799891.

Abstract

Our ab initio all-electron Dirac-Fock and the corresponding nonrelativistic limit calculations performed at four U-F bond distances yield for octahedral UF(6) (-) the optimized U-F bond distance of 2.091 and 2.088 A, respectively. We have also performed Dirac scattered wave calculations at the optimized U-F bond distances using the first-order pertubational procedure to obtain the Zeeman and hyperfine magnetic tensors for the octahedral anion UF(6) (-). The calculated isotropic Zeeman tensor of Deltag=-2.87 is in fairly good agreement with the value of Deltag=-2.78+/-0.10 obtained in electron spin resonance experiments on the H(3)O(+)UF(6) (-) adduct and the unpaired electron-spin spends approximately 2.5% of its time on the fluorine 2p(3/2) spinors. The calculated relativistic transition energies of the near-IR and visible absorption bands are also in good agreement with the experimental results. The octahedral uranium hexafluoride anion has a simple crystal field f(1) configuration; however, relativistic four-component wave functions are necessary to interpret correctly the available magnetic data, while a relativistic treatment taking into account double group symmetrized basis functions should suffice for the interpretation of the optical data.