Rho small GTPases activate the epithelial Na(+) channel

J Biol Chem. 2004 Nov 26;279(48):49989-94. doi: 10.1074/jbc.M409812200. Epub 2004 Sep 23.

Abstract

Small G proteins in the Rho family are known to regulate diverse cellular processes, including cytoskeletal organization and cell cycling, and more recently, ion channel activity and activity of phosphatidylinositol 4-phosphate 5-kinase (PI(4)P 5-K). The present study investigates regulation of the epithelial Na(+) channel (ENaC) by Rho GTPases. We demonstrate here that RhoA and Rac1 markedly increase ENaC activity. Activation by RhoA was suppressed by the C3 exoenzyme. Inhibition of the downstream RhoA effector Rho kinase, which is necessary for RhoA activation of PI(4)P 5-K, abolished ENaC activation. Similar to RhoA, overexpression of PI(4)P 5-K increased ENaC activity suggesting that production of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in response to RhoA-Rho kinase signaling stimulates ENaC. Supporting this idea, inhibition of phosphatidylinositol 4-kinase, but not the RhoA effector phosphatidylinositol 3-kinase and MAPK cascades, markedly attenuated RhoA-dependent activation of ENaC. RhoA increased ENaC activity by increasing the plasma membrane levels of this channel. We conclude that RhoA activates ENaC via Rho kinase and subsequently activates PI(4)P 5-K with concomitant increases in PI(4,5)P(2) levels promoting channel insertion into the plasma membrane.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • COS Cells
  • Cell Membrane / metabolism
  • Chlorocebus aethiops
  • Phosphotransferases (Alcohol Group Acceptor) / metabolism
  • Sodium Channels / metabolism*
  • rho GTP-Binding Proteins / metabolism*

Substances

  • Sodium Channels
  • Phosphotransferases (Alcohol Group Acceptor)
  • phosphatidylinositol 4,5-biphosphate kinase
  • rho GTP-Binding Proteins