Selective detection of monohydroxy metabolites of polycyclic aromatic hydrocarbons in urine using liquid chromatography/triple quadrupole tandem mass spectrometry

Rapid Commun Mass Spectrom. 2004;18(19):2299-308. doi: 10.1002/rcm.1625.

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitously present in the environment and associated with a variety of adverse health effects. Monohydroxylated PAHs (OH-PAHs), metabolites of PAHs, have been employed as biomarkers for human exposure assessment of PAHs. This manuscript describes new, selective detection methods for OH-PAHs using liquid chromatography and tandem mass spectrometry (LC/MS/MS). Electrospray ionization was operated in the negative ion mode to detect the deprotonated PAH metabolites ([M-H](-)). Hydroxylated metabolites of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, benzo[c]phenanthrene, chrysene, benzo[a]anthracene, and benzo[a]pyrene were selected for the method development. Based on the collision-induced dissociation MS/MS spectra of the selected OH-PAHs, a characteristic ion fragmentation, loss of 28 Da from the [M--H](-) ion, was identified for all of these OH-PAHs. This characteristic fragmentation was exploited for selective screening for OH-PAHs in human urine by incorporating a constant neutral loss (CNL) scan with data-dependent scanning, using a triple quadruple mass spectrometer. Selected reaction monitoring (SRM) was also used to tentatively identify isomers of the target OH-PAHs in human urine. The excellent linearity (3-4 orders of magnitude) and signal-to-noise performance provided by the SRM method allowed development of a sensitive LC/MS/MS method for measuring OH-PAHs in urine samples. The limits of detection of the SRM method ranged from approximately 0.1-5 pg on column for a suite of OH-PAHs tested in the study. The LC-SRM method was applied, following enzymatic deconjugation and solid-phase extraction of the urine, to preliminarily determine the OH-PAH concentrations in urine specimens from six Chinese non-occupationally exposed workers and seven Chinese coke oven workers.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Validation Study

MeSH terms

  • Chromatography, Liquid / methods*
  • Humans
  • Microchemistry / methods*
  • Occupational Exposure / analysis
  • Polycyclic Aromatic Hydrocarbons / urine*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Spectrometry, Mass, Electrospray Ionization / methods*
  • Urinalysis / methods*

Substances

  • Polycyclic Aromatic Hydrocarbons