In situ EPR spectroscopy of aromatic diyne cyclopolymerization

J Org Chem. 2004 Sep 3;69(18):6124-7. doi: 10.1021/jo049198m.

Abstract

Electron paramagnetic resonance (EPR) spectroscopy was successfully used for the first time to follow the Bergman cyclization of bis-ortho-diynyl arene (BODA) compounds. Five BODA monomers with different spacer (X) and terminal groups (R) were compared. In situ polymerization via EPR spectroscopy yielded first-order rate expressions. Monomers with spacer -O- or -C(CF(3))(2) and terminal group R = Ph exhibited similar kinetic behavior upon thermal polymerization, whereas monomers with pyridine and thiophene terminal groups gave significantly higher rates of polymerization over phenyl-terminated derivatives. A model compound, 1,2-bis(phenylethynyl)benzene, was used to probe the polymerization mechanism, and radical intermediates were found to be stable indefinitely at room temperature.