Gene expression profiling reflects physiological processes in salt acclimation of Synechocystis sp. strain PCC 6803

Plant Physiol. 2004 Oct;136(2):3290-300. doi: 10.1104/pp.104.045047. Epub 2004 Sep 10.

Abstract

The kinetics of genome-wide responses of gene expression during the acclimation of cells of Synechocystis sp. PCC 6803 to salt stress were followed by DNA-microarray technique and compared to changes in main physiological parameters. During the first 30 min of salt stress, about 240 genes became induced higher than 3-fold, while about 140 genes were repressed. However, most changes in gene expression were only transient and observed among genes for hypothetical proteins. At 24 h after onset of salt stress conditions, the expression of only 39 genes remained significantly enhanced. Among them, many genes that encode proteins essential for salt acclimation were detected, while only a small number of genes for hypothetical proteins remained activated. Following the expression of genes for main functions of the cyanobacterial cell, i.e. PSI, PSII, phycobilisomes, and synthesis of compatible solutes, such as ion homeostasis, distinct kinetic patterns were found. While most of the genes for basal physiological functions were transiently repressed during the 1st h after the onset of salt stress, genes for proteins specifically related to salt acclimation were activated. This gene expression pattern reflects well the changes in main physiological processes in salt-stressed cells, i.e. transient inhibition of photosynthesis and pigment synthesis as well as immediate activation of synthesis of compatible solutes. The results clearly document that following the kinetics of genome-wide expression, profiling can be used to envisage physiological changes in the cyanobacterial cell after certain changes in growth conditions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological*
  • Biological Transport
  • Blotting, Northern
  • Gene Expression / drug effects
  • Gene Expression Profiling*
  • Genes, Bacterial
  • Microarray Analysis
  • Osmotic Pressure
  • Photosynthesis / drug effects
  • Sodium Chloride / pharmacology*
  • Synechocystis / drug effects*
  • Synechocystis / genetics
  • Synechocystis / metabolism*
  • Time Factors

Substances

  • Sodium Chloride