Composition and structure of apatite formed on organic polymer in simulated body fluid with a high content of carbonate ion

J Mater Sci Mater Med. 2000 Jul;11(7):421-6. doi: 10.1023/a:1008935924847.

Abstract

Apatite layer was formed on polyethyleneterephthalate (PET) substrate by the following biomimetic process. The PET substrate was placed on granular particles of a CaO, SiO2-based glass in simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma to form apatite nuclei on their surfaces. The apatite nuclei was then grown into a continuous layer by subsequently soaking the substrate in SBF under air or CO2 atmosphere in which CO2 partial pressure in the ambient was adjusted to 14.8 kPa to increase the content of carbonate ion to a level nearly equal to that of blood plasma. The increase in the content of carbonate ions in SBF changed the Ca/P atomic ratio of the apatite from 1.51 to 1.63, content of CO(3)2- ions from 2.64 to 4.56 wt %, and lattice constants a from 94.32 to 94.23 nm and c from 68.70 to 68.83 nm, respectively. The Ca/P ratio and lattice constants of the apatite formed in SBF under CO2 atmosphere were approximately identical to those of bone apatite, i.e. Ca/P atomic ratio 1.65, content of CO(3)2- ion 5.80 wt % and lattice constants a 94.20 and c 68.80 nm. This indicates that an apatite with composition and structure nearly identical to those of bone apatite can be produced in SBF by adjusting its ion concentrations including the content of carbonate ions to be equal to those of blood plasma.