Zinc homeostasis in premature infants does not differ between those fed preterm formula or fortified human milk

Pediatr Res. 2004 Oct;56(4):615-20. doi: 10.1203/01.PDR.0000139428.77791.3D. Epub 2004 Aug 4.

Abstract

The objectives of this study were to compare zinc homeostasis in premature infants enterally fed with either preterm infant formula or fortified human milk; to examine interrelationships of variables of zinc homeostasis; and to examine the findings in relation to estimated zinc requirements of preterm infants. Zinc homeostasis was studied in 14 infants (8 male), with mean gestational age of 31 wk and birth weight appropriate for gestational age, who were exclusively fed either preterm formula (n = 9) or own mother's milk with human milk fortifier (n = 5). Zinc stable isotopes were administered intravenously ((70)Zn) and orally as an extrinsic label ((67)Zn) over multiple feeds for determination of fractional absorption by dual isotope tracer ratio in urine; endogenous fecal zinc was determined by isotope dilution; and exchangeable zinc pool (EZP) size was estimated from linear regression of log-transformed urine (70)Zn enrichment data. Results indicated no significant differences in the variables of zinc homeostasis between the feeding groups; data for all subjects were thus combined. Mean (+/- SD) fractional absorption was 0.26 +/- 0.07; net absorbed zinc 0.43 +/- 0.25 mg/d (0.31 +/- 0.19 mg/kg/d). Mean EZP was 20 +/- 10 mg/kg, and was positively correlated with total absorbed zinc and with net absorbed zinc. Feeding type and total absorbed zinc were significantly related to daily weight gain (p = 0.003). Current zinc intakes from fortified human milk or formula are associated with acceptable weight gain, but whether the observed net zinc absorption was optimal in the human milk group cannot be definitively determined from these data.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cross-Sectional Studies
  • Female
  • Food, Fortified
  • Homeostasis / physiology
  • Humans
  • Infant Formula*
  • Infant, Newborn
  • Infant, Premature / metabolism*
  • Intestinal Absorption
  • Male
  • Milk, Human*
  • Zinc / pharmacokinetics*

Substances

  • Zinc