Direct preparation of allylic indium(III) reagents from allylic alcohols via a reductive transmetalation of pi-allylnickel(II) with indium(I) iodide

J Org Chem. 2004 Jul 23;69(15):5054-9. doi: 10.1021/jo049394t.

Abstract

InI-mediated direct allylation of carbonyl compounds with allylic alcohols proceeded smoothly with catalytic amounts of Ni(acac)(2) and PPh(3) to give the corresponding homoallylic alcohols in high yields. Allylindium compounds were shown to be the real allylating agents in the present system. Substituted allylic alcohols gave branched homoallylic alcohols with syn-selectivity irrespective of the geometry of the starting allylic alcohols, whereas high anti-selectivity was observed when a bulky substituent is present in the allylic alcohols. The outcome of the diastereoselectivity is discussed on the basis of the reaction mechanism, comparing with the corresponding Pd-catalyzed version. Another distinct behavior between the Ni- and Pd-catalyzed allylation was demonstrated in the reaction of hex-1,5-diene-3,4-diol derivatives: the Pd catalyst did not give any coupling product, whereas the Ni-catalyzed InI-mediated reaction with benzaldehyde afforded the 1:1 and 1:2 adduct diols selectively depending on the reaction conditions.