Noisy spectra, long correlations, and intermittency in wave turbulence

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066608. doi: 10.1103/PhysRevE.69.066608. Epub 2004 Jun 11.

Abstract

We study the k-space fluctuations of the wave action about its mean spectrum in the turbulence of dispersive waves. We use a minimal model based on the random phase approximation (RPA) and derive evolution equations for the arbitrary-order one-point moments of the wave intensity in the wave-number space. The first equation in this series is the familiar kinetic equation for the mean wave-action spectrum, whereas the second and higher equations describe the fluctuations about this mean spectrum. The fluctuations exhibit a nontrivial dynamics if some long coordinate-space correlations are present in the system, as it is the case in typical numerical and laboratory experiments. Without such long-range correlations, the fluctuations are trivially fixed at their Gaussian values and cannot evolve even if the wave field itself is non-Gaussian in the coordinate space. Unlike the previous approaches based on smooth initial k-space cumulants, the RPA model works even for extreme cases where the k-space fluctuations are absent or very large and intermittent. We show that any initial non-Gaussianity at small amplitudes propagates without change toward the high amplitudes at each fixed wave number. At each fixed amplitude, however, the probability distribution function becomes Gaussian at large time.