Gas-phase ion chemistry in the ternary silane-propyne-phosphine system

J Mass Spectrom. 2004 Jun;39(6):682-90. doi: 10.1002/jms.641.

Abstract

The gas-phase ion chemistry of propyne-phosphine and silane-propyne-phosphine mixtures was studied by ion trap mass spectrometry. For the binary mixture, the effect of different partial pressures of the reagents on the yield of C and P-containing ions was evaluated. Reaction sequences and rate constants were determined and reaction efficiencies were calculated from comparison of experimental and collisional rate constants. In the ternary silane-propyne-phosphine systems, the reaction pathways leading to formation of Si(m)C(n)P(p)H(q) (+) ions were determined and the rate constants of the most important steps were measured. For some ion species, selected by double isolation procedures (MS/MS), the low ion abundances prevented determination of the reaction rate constants. Si, C and P-containing ions are mainly produced in reactions of Si(m)P(p)H(q) (+) ions with propyne, while the reactivity of the Si(m)C(n)H(q) (+) ions towards PH(3) and of the C(n)P(p)H(q) (+) ions towards SiH(4) is very low. The formation of hydrogenated Si--C--P ions is interesting for their possible role as precursors of amorphous silicon carbides doped with phosphorus, obtained in a single step, by deposition from properly activated silane-propyne-phosphine mixtures.