Determination of 2H/1H and 13C/12C isotope ratios of (E)-methyl cinnamate from different sources using isotope ratio mass spectrometry

J Agric Food Chem. 2004 May 19;52(10):3065-8. doi: 10.1021/jf040018j.

Abstract

For the authenticity assessment of (E)-methyl cinnamate from different origins, combustion/pyrolysis-isotope ratio mass spectrometry (C/P-IRMS) was used by an elemental analyzer (EA) and on-line capillary gas chromatography coupling (HRGC-C/P-IRMS). For that reason, (E)-methyl cinnamate self-prepared from synthetic, natural, and semisynthetic educts was analyzed in comparison to the commercial synthetic and natural ester. In addition, (E)-methyl cinnamate from basil extract and a number of commercial natural aromas was investigated. The data of self-synthesized synthetic (E)-methyl cinnamate, i.e., delta(13)C(V)(-)(PDB) = -33.8 per thousand and delta(2)H(V)(-)(SMOW) = +349 per thousand, corresponded with that found for the commercial synthetic samples (-29.5 to -31.4 per thousand and +328 to +360 per thousand for delta(13)C(V)(-)(PDB) and delta(2)H(V)(-)(SMOW), respectively). The ester produced from natural educts by acid as well as Candida antarctica catalysis revealed delta(13)C(V)(-)(PDB) = -25.6 and -30.1 per thousand as well as delta(2)H(V)(-)(SMOW) = -162 and -169 per thousand, respectively. Acid-catalyzed semisynthetic products differed in their delta(13)C(V)(-)(PDB) and delta(2)H(V)(-)(SMOW) values depending on the origin of their educts. For the ester from synthetic methanol and natural cinnamic acid, -27.3 and -126 per thousand were determined for delta(13)C(V)(-)(PDB) and delta(2)H(V)(-)(SMOW), respectively, whereas for the ester produced from natural methanol and synthetic acid delta(13)C(V)(-)(PDB) = -30.6 per thousand and delta(2)H(V)(-)(SMOW) = +287 per thousand were found. Basil extract showed -28.9 and -133 per thousand for delta(13)C(V)(-)(PDB) and delta(2)H(V)(-)(SMOW), respectively. Commercial aromas declared to be natural revealed delta(13)C(V)(-)(PDB) and delta(2)H(V)(-)(SMOW) data ranging from -25.7 to -28.5 per thousand as well as -85 to -191 per thousand, respectively, indicating, in part, incorrect declaration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon Isotopes / analysis
  • Cinnamates / analysis*
  • Deuterium / analysis
  • Gas Chromatography-Mass Spectrometry
  • Isotopes*
  • Mass Spectrometry / methods*
  • Ocimum basilicum / chemistry
  • Plant Extracts / chemistry

Substances

  • Carbon Isotopes
  • Cinnamates
  • Isotopes
  • Plant Extracts
  • methyl cinnamate
  • Deuterium