Dry deposition of O3, SO2, and HNO3 to different vegetation in the same exposure environment

Environ Pollut. 1988;53(1-4):13-25. doi: 10.1016/0269-7491(88)90022-x.

Abstract

Agricultural meteorological modeling techniques are used to investigate the relative and absolute dry deposition fluxes of SO2 (as sulfur), HNO3 (as nitrogen) and O3 to large fields of maize, soybeans, and alfalfa exposed in conditions as measured in northern Illinois, central Pennsylvania, and eastern Tennessee. For HNO3, the differences in seasonal deposition rates among the three types of plant species are small. Within the same environment, the soybean canopy has the potential to receive substantially more gaseous dry deposition of SO2 and O3 than the maize and alfalfa (which are about the same), as a result of lower stomatal resistance and consequently higher deposition velocities. Deposition differences among the sites are small except for the case of SO2, for which deposition rates estimated for northern Illinois are nearly double those at the other locations. The high SO2 deposition at the northern Illinois location is a consequence of the higher air concentrations observed there.