An optical spot test for the detection of dopamine in human urine using stabilized in air lipid films

Anal Chem. 2004 Apr 15;76(8):2174-80. doi: 10.1021/ac0499470.

Abstract

The present technique describes a simple, sensitive spot test for the rapid one-shot detection of dopamine in human urine using lipid films with incorporated resorcin[4]arene receptor that are synthesized by a chemical reaction with a methacrylate polymer on a glass fiber filter. The lipid films without the receptor provided fluorescence under a UV lamp. The use of the receptor in these films quenched this fluorescence, and the color became similar to that of the filters without the lipid films. A drop of dopamine or urine containing this stimulant provided a "switching on" of the fluorescence, which allows the rapid detection of this stimulant in human urine at 10(-8) M concentrations. The novelty of the present work is that it opens new routes in the field of biosensing, i.e., development of sensitive, rapid, and simple methods for detecting species based on the fluorescence of the lipid membranes on a polymer film, and provides a spot test technique for the rapid detection of dopamine. The effect of potent interferences including a wide range of compounds usually found in human urine (i.e., ascorbic aid, glucose, leucine, glycine, tartrate, citrate, bicarbonate, and caffeine) was examined using an aqueous buffered solution that contained the potent interference and dopamine at two lower concentration levels (i.e., 3 x 10(-8)-10(-8) M). The effect of proteins and lipids was also investigated at these two lower dopamine concentration levels in aqueous buffered solution. The results showed no interferences from all these constituents at concentrations usually found in human urine samples; for example, albumin up to 3.22 g/L concentration levels did not provide any interference (i.e., no fluorescence). A drop of urine containing this stimulant provided similar results, i.e., a "switching on" of the fluorescence that allows a technique for the rapid detection of this stimulant in human urine at 10(-8) M concentrations. The technique is not based on a calibration graph but is a semiquantitative method for the detection of dopamine in real samples of urine that can be complimentary to HPLC methods. The difference in color between the samples containing dopamine at concentration levels of 10(-8)-10(-7) M can be easily distinguished by naked eye and a digital camera. An increase of dopamine concentration from 10(-8) to 10(-7) M makes the color more blue whereas the color of the filters remains purple in the blank test (i.e., addition of a urine sample without dopamine or dopamine at concentration levels of 10(-9) M to the filters that contain the lipid membranes with incorporated receptor). The reproducibility of the method was checked in approximately 100 samples, and all of them were found to provide similar results. Note that it was also found that the colors remain stable in the samples containing dopamine for periods of more than two months.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dopamine / urine*
  • Filtration / instrumentation
  • Filtration / methods
  • Glass
  • Humans
  • Hydrocarbons / chemical synthesis
  • Hydrocarbons / chemistry
  • Lipids / chemical synthesis
  • Lipids / chemistry*
  • Membranes, Artificial*
  • Molecular Structure
  • Polymers / chemical synthesis
  • Polymers / chemistry
  • Resorcinols / chemical synthesis
  • Resorcinols / chemistry

Substances

  • Hydrocarbons
  • Lipids
  • Membranes, Artificial
  • Polymers
  • Resorcinols
  • fiberglass
  • resorcin(4)arene receptor
  • Dopamine