Effects of jump training on procollagen alpha(1)(i) mRNA expression and its relationship with muscle collagen concentration

Can J Appl Physiol. 2004 Apr;29(2):157-71. doi: 10.1139/h04-012.

Abstract

The aim of this study was to examine the effects of a prolonged high-intensity exercise, jumping, on procollagen alpha(1)(I) mRNA level and collagen concentration in different muscles of trained (T) and control (C) rabbits. Procollagen alpha(1)(I) mRNA expression was much higher (2.8 to 23.5 times) in semimembranosus proprius (SMP), a slow-twitch oxidative muscle, than in extensor digitorum longus (EDL), rectus femoris (RF), and psoas major (Psoas) muscles, both fast-twitch mixed and glycolytic, whatever group was considered (p < 0.001). Procollagen alpha(1)(I) mRNA level also decreased significantly between 50 and 140 days in all muscles (0.001< p < 0.01). However, mRNA levels were 16 to 97% greater at 140 days in all muscles of T animals compared to C ones (0.01< p <0.05). Collagen concentrations of EDL and RF muscles were also higher (14 to 19%) in T than in C rabbits at 90 and 140 days (0.001 < p < 0.05). In the whole sample, collagen concentration was negatively associated with the procollagen alpha(1)(I) mRNA level in EDL and RF muscles (- 0.49 < r < (- 0.44, p < 0.05), while being positively related to mRNA expression in SMP and Psoas muscles (0.65 < r < 0.85, p < 0.01). It is concluded that jump training clearly restricts the decrease of procollagen (I) mRNA level and probably affects collagen synthesis level. In trained rabbit muscles, the maintenance of a better synthesis level could partly explain the higher collagen concentrations found in EDL and RF at 140 days. Nevertheless, the collagen degradation process seems to play the main role in the increase of total collagen concentration with age in EDL and RF muscles.

MeSH terms

  • Age Factors
  • Animals
  • Body Weight / physiology
  • Cluster Analysis
  • Collagen / analysis
  • Collagen / metabolism*
  • Male
  • Muscle Fibers, Skeletal / metabolism
  • Muscle Fibers, Skeletal / physiology
  • Muscle, Skeletal / metabolism
  • Muscle, Skeletal / physiology*
  • Physical Conditioning, Animal / methods
  • Physical Conditioning, Animal / physiology*
  • Procollagen / analysis
  • Procollagen / biosynthesis*
  • RNA, Messenger / analysis
  • Rabbits

Substances

  • Procollagen
  • RNA, Messenger
  • Collagen