A simple and general method for the synthesis of multicomponent Na2V6O16.3H2O single-crystal nanobelts

J Am Chem Soc. 2004 Mar 24;126(11):3422-3. doi: 10.1021/ja031795n.

Abstract

Multicomponent Na2V6O16.3H2O (barnesite) single-crystalline nanobelts were synthesized by a direct reaction-crystallization growth of bulk V2O5 and NaF powders under hydrothermal treatment without using any templates or catalysts. This new strategy could be extended to prepare other one-dimensional multicomponent nanomaterials including ammonium, alkali-metal or alkali-earth metal vanadium oxide bronzes and other transition metal oxyfluorides. This is an efficient and mild solution method with clear advantages over the traditional high-temperature approach for the large-scale production of 1D multicomponent nanomaterials. The applicability of this approach toward the preparation of other inorganic systems, such as tungstates and molybdates, will be explored.