Xiphophorus genetic linkage map: beginnings of comparative gene mapping in fishes

Mar Biotechnol (NY). 2001 Jun;3(Supplement 1):S153-61. doi: 10.1007/s10126001-0037-y.

Abstract

The explosive expansion of gene maps of mouse and man has provided strong support for hypotheses first advanced from comparing fish and mammalian genomes that the vertebrate genome was derived from multiple ancestral tetraploidizations with subsequent preferential translocations among paralogous chromosomes. At least two genome duplication events have become widely accepted in lineages leading to vertebrates, and a third has been proposed either before, or after, divergence of fishes and tetrapods. Cytogenetic and comparative gene mapping studies suggest that teleost gene maps have diverged more slowly from gene arrangements in the vertebrate ancestor than have those of mammals. The recent assembly of extensive maps of >100 genes in three fish species, medaka (Beloniformes), Xiphophorus swordtails and platyfishes (Cyprinodontiformes), and zebrafish (Cypriniformes) and the development of less extensive maps in several other fish orders provides the first salient opportunity to assess homology of most or all chromosomes among fishes.