Arachidonoyl-phospholipid remodeling in proliferating murine T cells

Lipids Health Dis. 2004 Jan 30:3:1. doi: 10.1186/1476-511X-3-1.

Abstract

Background: Previous studies have shown that the functional capacity of T cells may be modulated by the composition of fatty acids within, and the release of fatty acids from membrane phospholipids, particularly containing arachidonic acid (AA). The remodeling of AA within membrane phospholipids of resting and proliferating CD4+ and CD8+ T cells is examined in this study.

Results: Splenic T cells were cultured in the presence or absence of anti-CD3 mAb for 48 h then labeled with [3H]AA for 20 min. In unstimulated cells, labeled AA was preferentially incorporated into the phosphoglycerides, phosphatidylcholine (PC) followed by phosphatidylinositol (PI) and phosphatidylethanolamine (PE). During a subsequent chase in unlabeled medium unstimulated CD4+ and CD8+ T cells demonstrated a significant and highly selective transfer of free, labeled AA into the PC pool. In contrast, proliferating CD4+ and CD8+ T cells distributed labeled [3H]AA predominantly into PI followed by PC and PE. Following a chase in AA-free medium, a decline in the content of [3H]AA-PC was observed in association with a comparable increase in [3H]AA-PE. Subsequent studies revealed that the cold AA content of all PE species was increased in proliferating T cells compared with that in non-cycling cells, but that enrichment in AA was observed only in the ether lipid fractions. Finally, proliferating T cells preincubated with [3H]AA exhibited a significant loss of labeled arachidonate in the PC fraction and an equivalent gain in labeled AA in 1-alk-1'-enyl-2-arachidonoyl-PE during a chase in unlabeled medium.

Conclusion: This apparent unidirectional transfer of AA from PC to ether-containing PE suggests the existence of a CoA-independent transacylase system in T cells and supports the hypothesis that arachidonoyl phospholipid remodeling may play a role in the regulation of cellular proliferation.