Homocystinuria due to cystathionine beta-synthase deficiency: novel biochemical findings and treatment efficacy

J Inherit Metab Dis. 2003;26(8):761-73. doi: 10.1023/B:BOLI.0000009963.88420.c2.

Abstract

To explore the pathogenesis of cystathionine beta-synthase (CBS) deficiency and to test the efficacy of pharmacological therapy we examined a panel of metabolites in nine homocystinuric patients under treated and/or untreated conditions. Off pharmacological treatment, the biochemical phenotype was characterized by accumulation of plasma total homocysteine (median 135 micromol/L) and blood S -adenosylhomocysteine (median 246 nmol/L), and by normal levels of guanidinoacetate and creatine. In addition, enhanced remethylation was demonstrated by low serine level (median 81 micromol/L), and by increased concentration of methionine (median 76 micromol/L) and N -methylglycine (median 6.8 micromol/L). Despite the substantially blocked transsulphuration, which was evidenced by undetectable cystathionine and severely decreased total cysteine levels (median 102 micromol/L), blood glutathione was surprisingly not depleted (median 1155 micromol/L). In 5 patients in whom pharmacological treatment was withdrawn, the differences of median plasma total homocysteine levels (125 micromol/L after withdrawal versus 33 micromol/L under treatment conditions), total cysteine levels (139 versus 211 micromol/L) and plasma serine levels (53 versus 103 micromol/L) on and off treatment demonstrated the efficacy of long-term pyridoxine/betaine administration ( p <0.05). The treatment also decreased blood S -adenosylhomocysteine level (133 versus 59 nmol/L) with a borderline significance. In summary,our study shows that conventional treatment of CBS deficiency by diet and pyridoxine/betaine normalizes many but not all metabolic abnormalities associated with CBS deficiency. We propose that the finding of low plasma serine concentration in untreated CBS-deficient patients merits further exploration since supplementation with serine might be a novel and safe component of treatment of homocystinuria.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Child
  • Child, Preschool
  • Female
  • Homocystinuria / metabolism*
  • Homocystinuria / therapy
  • Humans
  • Male
  • S-Adenosylhomocysteine / blood
  • S-Adenosylmethionine / blood

Substances

  • S-Adenosylmethionine
  • S-Adenosylhomocysteine