Synthesis and characterization of Mo(6) chalcobromides and cyano-substituted compounds built from a novel [(Mo(6)Br(i)(6)Y(i)(2))L(a)(6)](n)()(-) discrete cluster unit (Y(i) = S or Se and L(a) = Br or CN)

Inorg Chem. 2004 Jan 12;43(1):219-26. doi: 10.1021/ic034443q.

Abstract

The syntheses, crystal structures determined by single-crystal X-ray diffraction, and characterizations of new Mo(6) cluster chalcobromides and cyano-substituted compounds with 24 valence electrons per Mo(6) cluster (VEC = 24), are presented in this work. The structures of Cs(4)Mo(6)Br(12)S(2) and Cs(4)Mo(6)Br(12)Se(2) prepared by solid state routes are based on the novel [(Mo(6)Br(i)(6)Y(i)(2))Br(a)(6)](4)(-) (Y = S, Se) discrete units in which two chalcogen and six bromine ligands randomly occupy the inner positions, while the six apical ones are fully occupied by bromine atoms. The interaction of these two compounds with aqueous KCN solution results in apical ligand exchange giving the two first Mo(6) cyano-chalcohalides: Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)S(2))(CN)(6)](3).16H(2)O and Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)Se(2))(CN)(6)](3).16H(2)O. Their crystal structures, built from the original [(Mo(6)Br(i)(6)Y(i)(2))(CN)(a)(6)](4)(-) discrete units, will be compared to those of the two solid state precursors and other previously reported Mo(6) cluster compounds. Their redox properties and (77)Se NMR characterizations will be presented. Crystal data: Cs(4)Mo(6)Br(12)S(2), orthorhombic, Pbca (No. 61), a = 11.511(5) A, b = 18.772(5) A, c = 28.381 A (5), Z = 8; Cs(4)Mo(6)Br(12)Se(2), Pbca (No. 61), a = 11.6237(1) A, b = 18.9447(1) A, c = 28.4874(1) A, Z = 8; Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)S(2))(CN)(6)](3).16H(2)O, Pm-3m (No. 221), a = 17.1969(4) A, Z = 1; Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)Se(2))(CN)(6)](3).16H(2)O, Pm-3m (No. 221), a = 17.235(5) A, Z = 1.