Photocurrent generation in multilayer self-assembly films fabricated from water-soluble poly(phenylene vinylene)

Chemistry. 2003 Dec 15;9(24):6031-8. doi: 10.1002/chem.200305037.

Abstract

A novel, water-soluble, cationic PPV derivative poly[(2,5-bis(3-bromotrimethylammoniopropoxy)-phenylene-1,4-divinylene)-alt-1,4-(2,5-bis(2-(2-hydroxyethoxy)ethoxy))phenylene vinylene] (BH-PPV) has been synthesized by a Heck coupling reaction. Multilayered assemblies of the BH-PPV and the sodium salt of hexa(sulfobutyl)fullerenes (C(60)-HS) were fabricated successfully by an alternate deposition technique. The multilayer structures were studied by UV/Vis spectroscopy, small angle X-ray diffraction, and atomic force microscopy. The photoinduced charge transfer property of the self-assembled multilayer film was also measured by a three-electrode cell technique. A steady and rapid cathodic 5.5 microA cm(-2) photocurrent response was measured as the irradiation of the multilayer film was switched on and off. Importantly, the response of on/off cycling is prompt and reproducible. A possible mechanism for the electron-transfer process is proposed.