Angular dependence of the luminance and contrast in medical monochrome liquid crystal displays

Med Phys. 2003 Oct;30(10):2602-13. doi: 10.1118/1.1606449.

Abstract

Active-matrix liquid crystal displays (AMLCDs) are light-modulating devices that generate images by differentially transmitting a nearly uniform luminous field provided by a backlight. While emissive displays exhibit a quasi-Lambertian emission with almost constant contrast at off-normal viewing, the anisotropy of the electro-optic effect that controls light transmission in AMLCDs causes a pixel luminance that varies, sometimes strongly, with viewing angle. These variations are not identical for all gray levels and can eventually cause grayscale inversions. In this paper, we measured the luminance emission of a monochrome medical AMLCD, a medical cathode-ray tube monitor, and a color desktop AMLCD, using a collimated photopic probe positioned on a manual rotation arm, and a research radiometer with automatic readout. The probe measures luminance with a small acceptance angle and provides optical shielding from emissions at other viewing directions that contaminate the readings. We obtained luminance response curves versus angle in the vertical, horizontal and at 45 degrees diagonal directions. The display systems were calibrated to reflect the DICOM Part 3.14 standard grayscale display function (GDF) when measured using the manufacturer's probe and software tools. We analyzed the measurements at different viewing directions with respect to their departure from the GDF by computing the normalized contrast (deltaL/L) as a function of the DICOM just-noticeable difference index. Although cathode-ray tubes are known to be quasi-Lambertian emitters, the luminance at normal viewing is higher than the luminance observed at large angles. This decrease in luminance is however proportionally similar for all gray levels, resulting in a relatively flat contrast response for all angles. In addition to being more pronounced, the angular variation in AMLCDs does not follow the same profile at different intensities with the subsequent variation in the achieved display contrast. The changes due to off-normal viewing are substantial at large angles in the horizontal and vertical directions, and much worse in the diagonal viewing directions.

MeSH terms

  • Anisotropy
  • Computer Terminals
  • Crystallization
  • Data Display*
  • Equipment Design*
  • Fourier Analysis
  • Humans
  • Light
  • Lighting
  • Luminescent Measurements
  • Optics and Photonics / instrumentation
  • Radiographic Image Enhancement / instrumentation
  • Radiographic Image Enhancement / methods*
  • Software
  • Technology, Radiologic / instrumentation