Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons

Anal Chem. 2003 Nov 1;75(21):5870-6. doi: 10.1021/ac034506m.

Abstract

This paper demonstrates, for the first time, that ionic liquids (IL) such as 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)MIM][PF(6)]) are excellent extraction solvents in liquid-phase microextraction (LPME). The unique properties of nonvolatility and adequate viscosity allow IL to be conveniently adopted as extraction solvents in both direct-immersion and headspace LPME. Model compounds, polycyclic aromatic hydrocarbons (PAHs), are conveniently and rapidly enriched in a 3-microL drop of [C(8)MIM][PF(6)] suspended on the tip of a microsyringe followed by liquid chromatographic determination. Compared to 1-octanol, a larger volume drop of [C(8)MIM][PF(6)] can be formed and survive for a longer extraction time; therefore, a much higher enrichment factor for PAHs can be reached. For low-volatility PAHs, direct-immersion LPME provides higher enrichment factors than that of headspace LPME. However, the enrichment factor obtained by headspace LPME was almost 3-fold of that by direct-immersion LPME in a 30-min extraction of the most volatile PAH, naphthalene. For 30-min direction-immersion LPME of EPA priority PAHs, the enrichment factor, correlation coefficient (R(2)), and reproducibility (RSD, n = 5) were in the range of 42-166, 0.9169-0.9976, and 2.8-12%, respectively. Considering that IL can be easily prepared from relatively inexpensive materials and tuned by combination of different anions and cations for task-specific extraction of analytes from various solvent media, this proposed method should have great potentiality in sample preparation. Furthermore, the nonvolatility of IL makes it potentially useful for headspace LPME of volatile analytes.