An engineered hyaluronan synthase: characterization for recombinant human hyaluronan synthase 2 Escherichia coli

J Biol Chem. 2004 Jan 23;279(4):2341-9. doi: 10.1074/jbc.M305723200. Epub 2003 Oct 28.

Abstract

The Class I hyaluronan synthase (HAS) is a unique glycosyltransferase synthesizing hyaluronan (HA), a polysaccharide composed of GlcUA and GlcNAc, by using one catalytic domain that elongates two different monosaccharides. As for the synthetic mechanism, there are two alternative manners for the sugar elongation process. Some bacterial HASs add new sugars to the non-reducing end of the acceptor to grow polymers. On the other hand, some vertebrate enzymes seem to transfer sugars to the reducing end. Expression of vertebrate HASs as active and soluble proteins will accelerate further precise insight into mechanisms of sugar elongation reactions by natural HASs. Since large scale production of HA polymers and oligomers would become powerful tools both for basic studies and new biotechnology to create functional carbohydrates in medicinal purposes, advent of an efficient method for the expression of HASs in Escherichia coli is strongly expected. Here we communicate the first success of the production of recombinant human HAS2 proteins composed of only the catalytic region in E. coli as the active form. It was demonstrated that an engineered HAS2 expressed in E. coli exhibited significant activity to synthesize a mixture of HAS oligomers from 8-mer (HA8) to 16-mer (HA16). Engineered HAS2 prepared herein elongated sugars from exogenous tetrasaccharide to form polymers with a direction to the non-reducing end. According to the present results, large scale production of engineered recombinant HASs is to be performed using E. coli that will provide practical and economic advantages in manufacturing enzymes for use in the synthesis of various oligomeric HA molecules and their industrial applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalytic Domain / genetics
  • Escherichia coli
  • Glucuronosyltransferase
  • Humans
  • Hyaluronan Synthases
  • Peptide Fragments / chemistry
  • Peptide Fragments / metabolism
  • Polymers
  • Protein Engineering
  • Recombinant Fusion Proteins* / biosynthesis
  • Recombinant Fusion Proteins* / genetics
  • Substrate Specificity
  • Transferases* / biosynthesis
  • Transferases* / genetics

Substances

  • Peptide Fragments
  • Polymers
  • Recombinant Fusion Proteins
  • Transferases
  • Glucuronosyltransferase
  • Hyaluronan Synthases