Experimental studies of electroosmotic flow dynamics during sample stacking for capillary electrophoresis

Anal Chem. 2003 Jul 15;75(14):3531-8. doi: 10.1021/ac034102u.

Abstract

Electroosmotic flow dynamics during a field-amplified sample stacking experiment have been studied experimentally using the periodic photobleaching of a dilute, neutral fluorophore added to the separation buffer. The effects of hydrodynamically injecting different sample plug lengths containing a mixture of arsenic compounds dissolved in 0.125 mM (120, 240, and 600 s) and 41.7 microM (27, 45, and 74 s) phosphate buffer with a separation buffer concentration of 12.5 mM phosphate buffer were examined. Changes in electroosmotic flow during sample stacking and separation were monitored at a rate of 1 Hz. The observed effects of increasing the sample plug length on electroosmotic flow and electrophoretic current agreed qualitatively with predictions by theoretical models presented in the literature. Electroosmotic flow changes on the order of 100% (1.6-3.3 mm/s) were observed. Broadening of the flow monitoring peaks has been used to examine parabolic flow due to the discontinuous buffer systems used for sample stacking.